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RESEARCH OBJECTIVES

 Exploit the advantages of deterministic codes over 

Monte Carlo methods 

 Statistical uncertainty

 Computation time

 This work specifically seeks to:

 Benchmark the TITAN code’s collimator representation

 Better comprehend sensitivity to parameters

 Improve upon the collimator representation’s accuracy

 Examine the parallel behavior of the code
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INTRODUCTION TO SPECT

 Single Photon Emission 
Computed Tomography
 17 million procedures in the US 

in 2010

 Nuclear medicine imaging procedure 
used to examine myocardial perfusion, 
bone metabolism, thyroid function, etc.

 Functional imaging modality

 Radiopharmaceutical injected/ingested and localizes in a 
part of the body

 Emitted radiation detected at a gamma camera to form 2D 
projection images at different angles

 Collimator in front of the gamma camera provides spatial 
resolution

 Projection images can be reconstructed to form a 3D image 
of the radionuclide distribution
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THE TITAN CODE

 Deterministic transport code* to solve the linear 

Boltzmann equation (LBE)

 Hybrid code allowing different solvers:

 Discrete Ordinates (SN) Method: discretize spatial domain 

into meshes (differencing scheme) and solve LBE in a 

discrete set of directions (quadrature set)

 Characteristics Method (CM): discretize spatial domain 

into arbitrarily shaped regions and solve integral LBE 

along parallel directions (quadrature set)
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*C. Yi and A. Haghighat, “A 3-D Block-Oriented Hybrid Discrete Ordinates 

and Characteristics Method,” Nucl. Sci. & Eng., 164, pp. 221-247 (2010).
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THE TITAN SPECT FORMULATION

 Four-step hybrid SN and simplified ray-tracing formulation:

1. SN transport calculation in the phantom with regular quadrature set

2. Generation of fictitious quadrature set with circular ordinate splitting 
(COS) for a projection angle

3. One extra transport sweep in the phantom with the fictitious quadrature 
set using the converged flux moments from Step 1 to evaluate the 
scattering source:

4. Simulation of the projection image with the fictitious quadrature set 
using the simplified ray-tracing formulation outside of the phantom

 Step 1 is completed once and Steps 2-4 are then 
repeated for each projection angle desired.
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THE TITAN SPECT FORMULATION

 Circular Ordinate Splitting (COS)

 TITAN feature to 
approximate the collimator 

 Represents an acceptance 
angleθabout the detector 
normal within which incoming 
photons reach the detector

 Split directions made on a circle 
(or concentric circles) centered on the 
original projection direction

 Backward ray-tracing from 
collimator to phantom 
surface

 Average over original 
and split directions to 
approximate collimator blur
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PREVIOUSLY COMPLETED WORK: 

COMPARING TITAN RESULTS FOR

DIFFERENT COLLIMATORS

 TITAN comparison with 

MCNP5 

 using the NCAT voxel phantom

 considering different collimator 

acceptance angles
MCNP5

TITAN

Acceptance 

Angle

Maximum relative 

difference

2.97° 21.3%

1.42° 11.9%

0.98° 8.3%

Royston et al., Progress in Nuclear Science and Technology, 2, 2011

*All MCNP5 data had 1- uncertainty 3% in the heart
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THE WCOS ALGORITHM

 Weighted Circular Ordinate Splitting (WCOS)

 Developed to improve upon the COS 
collimator representation (especially, 
for collimators with small aspect ratios)

 Split directions used to calculate a 
geometry-based weighted average

1. Project detector surface area to front 
of collimator

2. Weight angular flux at phantom surface 
by overlapping area

 Number of split directions in 
concentric circles scaled to area

 User specifies collimator parameters 
(determines radius of outermost circle) 
and splitting order (i.e., number of 
directions on innermost circle)
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Example: splitting order of 

6 with 2 circles
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APPLICATION

Joint International Conference on Supercomputing in Nuclear Applications & Monte Carlo 2013

Collimator
Acceptance 

Angle

Detector 

Pixel Size

Aspect 

Ratio

LEGP 1.65° 0.210 cm 17.4:1

LEHS 4.29° 0.340 cm 6.7:1

 Cube of water with a cube of Tc-99m 

(140.5 keV) at the center

 Cross sections generated using the 

CEPXS code (20% energy window)

 Multigroup MCNP5 utilizing the 

CEPXS cross sections

 Model a Low Energy General Purpose 

(LEGP) collimator & a Low Energy 

High Sensitivity (LEHS) collimator
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RESULTS

1. Phantom Modeling – Mesh and Quadrature 

Studies

2. Comparison with Monte Carlo

3. Computation Time & Parallel Performance
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RESULTS: PHANTOM MODELING – MESH

& QUADRATURE STUDIES

Mesh
Number of 

Meshes
Mesh Size

Coarse 16x16x16 0.6250 cm

Base 32x32x32 0.3125 cm

Fine 64x64x64 0.15625 cm
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RESULTS: PHANTOM MODELING – MESH & 

QUADRATURE STUDIES

LEGP collimator (1.65°) LEHS collimator (4.29°)
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Choose the fine meshing for LEGP and the base meshing for LEHS 
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RESULTS: PHANTOM MODELING – MESH

& QUADRATURE STUDIES

 Same behavior observed for LEGP collimator

 S20 level-symmetric quadrature used in all following results

Quadrature Order
Difference Relative to S60

Average Maximum

S6 (48 directions) -9.28% -35.46%

S12 (168 directions) -1.85% -6.54%

S20 (440 directions) -0.26% -1.33%

S40 (1680 directions) -0.02% -0.06%

Difference in TITAN detector flux for LEHS collimator
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RESULTS: COMPARISON WITH MONTE

CARLO

 LEGP Collimator 
(1.65°)

 MCNP5 1σ 
uncertainties 0.8-
3.6%

 For normalized fluxes 
>0.1, average 
difference of 2.3%

 No significant 
difference between 
original COS and 
WCOS techniques
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FWHM*
Difference

MCNP5 TITAN

1.27 cm 1.25 cm -1.2%

*Full Width at Half Maximum
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RESULTS: COMPARISON WITH MONTE

CARLO

 LEHS Collimator (4.29°)

 MCNP5 1σ uncertainties 

0.4-4.4%

 The WCOS technique 

improves the TITAN 

solution
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Code
FWHM

(Relative Difference)

Average Relative 

Difference

MCNP5 1.60 cm -

TITAN + COS 1.47 cm (-7.9%) 8.5%

TITAN + WCOS 1.54 cm (-4.0%) 3.8%
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RESULTS: COMPUTATION TIME & PARALLEL PERFORMANCE

 All studies were completed on a dedicated PC-cluster:

 Intel Xeon 2.4 GHz processors

 3 compute nodes with 8 processors cores per node

 64 GB per node (8 GB per core)

 10 Gb network

 Detector dimensions chosen to cover model:

 LEGP collimator – 42 by 42 detector array

 LEHS collimator – 30 by 30 detector array

 Parallel Performance Metrics:
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Parallel Speedup

Parallel Efficiency

Parallelizable Fraction fp =
P(1- Sp)

Sp(1- P)

Sp =
Serial Computation Time

Parallel Computation Time

Ep =
Sp

P

P = number of processor cores



RESULTS: TITAN-WCOS COMPUTATION TIME & PARALLEL

PERFORMANCE

Projections
SN Time 

(s)

Projection 

Time (s)

Total Time 

(s)

4 435 25 455

45 - 298 729

90 - 557 985
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Projections
SN Time 

(s)

Projection 

Time (s)

Total 

Time (s)

Parallel 

Speedup

4 56 6 65 7.0

45 - 38 94 7.7

90 - 76 132 7.5

Serial Computation Times

Parallel Computation Times on 8 Processor Cores

Computation times for LEGP Collimator Case with increasing 

number of projection images:



RESULTS: TITAN-WCOS COMPUTATION

TIME & PARALLEL PERFORMANCE

Number of 

Processor Cores

Parallel 

Speedup

Parallel 

Efficiency

Parallelizable 

Fraction

2 1.95 0.98 0.97

4 3.87 0.97 0.99

8 7.47 0.93 0.99

12 10.97 0.91 0.99

16 12.44 0.78 0.98

24 17.07 0.71 0.98
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Results for 90 projection angles



RESULTS: COMPARISON OF TITAN WITH

MCNP5 COMPUTATION TIME

Collimator

MCNP5* TITAN†

Maximum 

Uncertainty (1σ)

Computation 

Time

Computation 

Time

LEGP 15.4% 46.9 hrs 132 sec

LEHS 9.9% 21.4 hrs 14 sec
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*Time with source biasing towards a single detector array
†Time to generate 90 projection images



CONCLUSIONS

 The weighted circular ordinate splitting (WCOS) 
collimator representation has been implemented in 
the TITAN code

 Algorithm sensitivity to meshing & quadrature order 
studied

 Solutions benchmarked against MCNP5 for two 
collimator cases showed excellent agreement

 Parallel behavior was studied and a parallelizable 
fraction of 98% was found

 Computation times were shown to be on the order of 
minutes for TITAN and hours/days for MCNP5
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ONGOING & FUTURE WORK

 An iterative reconstruction algorithm 

is being developed to utilize TITAN to 

model attenuation and scatter in the 

patient during the forward projection 

step

 Currently testing reconstruction of a 

2-dimensional phantom using TITAN
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